PRICAI 2016 论文精选 | 大规模文本分类

2016-08-26 10:31:15     作者:陈杨英杰      来源:雷锋网

文本分类是文本信息处理的基础性工作,因此受到很多关注,但文本的特征表示和大规模文本信息严重地限制了文本分类性能的提升。

导读:文本分类是文本信息处理的基础性工作,因此受到很多关注。但文本的特征表示严重地限制了文本分类性能的提升。而随着社会网络化的发展,大规模的甚至海量的文本信息急剧增加,导致文本分类问题面临着巨大挑战。本文是PRICAI 2016大会收录的论文,介绍了一种解决该问题的快速训练方法。


标题:大规模文本分类之图表增强型快速训练

摘要:

本文提出了一种基于增强型算法的图表分类快速训练方法,通过图表输入文本,应用到情绪分析中。图表的形式非常适合表示用自然语言处理技术处理过的文本结构,比如语法分析,命名实例识别和语义解析。目前,大量把文本表示为图表的分类方法已经被提出。然而,它们很多都因为特征空间大而提前限制候选特性。我们提出的方法,无需限制搜索空间,提出了两种近似方法来增强基于图表规则的学习。在情绪分析数据集上的实验结果表明,我们的方法有助于提高训练速度。此外,基于图表表示的分类方法利用了丰富的文本结构信息,这在使用其他更简单的输入格式时无法被检测到,最终表现出更高的准确率。

关键词:文本分类;特征工程;图表增强


第一作者:

Hiyori Yoshikawa

富士通实验室研究员,富士通是日本排名第一的IT厂商,全球第四大IT服务公司,全球前五大服务器和PC机生产商。


via PRICAI 2016

论文原文下载

雷锋网按: 本文由雷锋网(搜索“雷锋网”公众号关注)独家编译,未经许可禁止转载!

返回沙发首页  
沙发管家微信
扫描关注沙发管家微信 QQ群: 沙发网官方群 微博:

资讯评论

亲,你需要登录后才能进行评论喔!

还没有评论,快来抢沙发吧!

提示

热门设备安装方法 查看更多>>

最新设备

智能电视 / 盒子评测

安装指南

应用

热门专题